École Doctorale Mathématiques et STIC

Cours Doctoral - 2019 - Pr Kim Sang-Woo du 26 septembre au 3 octobre 2019

Triboelectric and piezoelectric nanogenerator

Cours Professeur invité d'Université Paris-Est, KIM Sang-Woo, SKKU Sungkyunkwan University, South Korea.

5 cours de 3 heures auront lieu à ESIEE Paris, Cité Descartes, 93160 Noisy le Grand.

Contact : Pr Philippe Basset

  • Jeudi 26 septembre 2019, 14h - 17h, amphi 160
  • Vendredi 27 septembre 2019, 14h - 17h, salle 4201
  • Lundi 30 septembre 2019, 14h - 17h, salle 1301
  • Mercredi 02 octobre 2019, 09h - 12h, salle 4401
  • Jeudi 03 octobre 2019, 09h - 12h, salle 3305

Mots clés : Energy harvesting, self-power systems, triboelectric nanogenerator, nanomaterials

Catégorie : cours doctoral en amphi

Domaine : physique / électronique

Langue d'intervention : anglais

Niveau du cours : Master / doctorat

Résumés :

Triboelectric and Piezoelectric Properties in Nanomaterials: From Fundamentals to Applications - (3 cours de 3h)

Smart sensors and network systems are commonly referred to as Internet of Things (IoT) and are being used to realize a smart society. Although the development of low-power smart systems and large-capacity batteries is increasing the usage time of IoT devices, the time-limited capability of such systems reveals a need for self-powered sensors and systems for sustained IoT use. Mechanical energy is easily accessible from the environment to power sensors and systems. The triboelectric nanogenerator (TENG) converts mechanical energy into electric energy was first introduced in January 2012, and I will address recent developments in the triboelectric properties of the polymers and composite nanomaterials because the contact electrification between the two different materials is a key factor of TENG. This tutorial lecture will discuss the four operating modes of TENG, the working mechanism, the theoretical modelling of the vertical TENG, and the research aspects of the material.
The piezoelectricity effectively allows to bring signals from the mechanical domain to the electrical domain and vice versa. Piezoelectricity is only possible in materials which have non-centrosymmetric structures and a bandgap, i.e. are non-metallic. Most remarkably, several materials are centrosymmetric and, therefore, not piezoelectric, in their bulk form, but the inversion center disappears when they are thinned down to monolayer, thus resulting in piezoelectricity. This is the case of hexagonal boron nitride, many transition-metal dichalcogenides, transition-metal dioxides, etc. Moreover, since all the atoms belong to the surface, piezoelectricity can be effectively engineered by proper surface modifications. As additional advantages, 2D materials are strong, flexible, easy to be integrated with conventional integrated circuits or micro-electromechanical systems and, in comparison with bulk or quasi-1D materials, easier to be simulated at atomistic level. The state of the art on 2D piezoelectricity will be reviewed with references to both computational predictions and experimental characterization.

Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting for Self-Powered Small Electronics (2 cours de 3h)

In this lecture, I will focus on an overview of recent significant progress in the development of hybrid energy harvesters based on nanomaterials (so called, Hybrid Nanogenerators) for a sustainable energy harvesting system that use nature and artificial energies such as solar, wind, wave, heat, vibration, and automobile noise. I will start with a brief introduction of energy harvesting systems, and then I summarize the different hybrid energy harvesting systems: integration of mechanical and photovoltaic energy harvesters, integration of mechanical and thermal energy harvesters, integration of thermal and photovoltaic energy harvesters, and others. In terms of the reported hybrid nanogenerators, I am going to systematically deliver their structures, working mechanisms and output performances. Specifically, I will review the electromagnetic induction, triboelectric, piezoelectric, photovoltaic, thermoelectric, and pyroelectric effects based individual and hybrid power performances of hybrid nanogenerators and their practical applications with various device designs. Finally, the perspectives on and challenges in developing high performance and sustainable hybrid nanogenerator systems will be presented.

Programme, résumé : Dans ce cours doctoral, le Professeur Noam Berger s'intéressera aux propriétés et questions ouvertes dans la théorie des processus à longues portées, en probabilités, théorie ergodique et mécanique statistique. Les g-measures sont des extensions des chaîne de Markov à mémoire longue, éventuellement infinies, et des critères d'unicité optimaux seront précisément décrits. Des exemples de processus à longues portées avec unicité ou transition de phases seront décrits, avec notamment des modèles d'Ising ou de percolation à longue portées, ou des exemples à g-functions plus explicite.

Objectifs de la formation : Découverte d'un domaine de pointe

Pré-requis : Licence scientifique